Möbius Transformations and the Bends and Centers of Generalized Circles, Spheres, and Hyperspheres

Edna Jones
Rutgers, The State University of New Jersey

Graduate Algebra and Representation Theory Seminar (GARTS)
Rutgers, The State University of New Jersey November 11, 2020

Möbius Transformations on \mathbb{C}

$$
\begin{aligned}
\mathrm{SL}(2, \mathbb{C}): \widehat{\mathbb{C}} & \rightarrow \widehat{\mathbb{C}} \\
& z
\end{aligned}
$$

Möbius Transformations on \mathbb{C}

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}(2, \mathbb{C})
$$

Möbius Transformations on \mathbb{C}

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}(2, \mathbb{C})
$$

Oriented Generalized m-Spheres

Definition (Generalized m-sphere)

A generalized m-sphere is an m-sphere or a hyperplane in \mathbb{R}^{m+1}.

Examples

A generalized 1 -sphere is a circle (1-sphere) or a line in \mathbb{R}^{2}. A generalized 2 -sphere is a sphere (2 -sphere) or a plane in \mathbb{R}^{3}.

Oriented Generalized m-Spheres

Definition (Generalized m-sphere)

A generalized m-sphere is an m-sphere or a hyperplane in \mathbb{R}^{m+1}.

Examples

A generalized 1 -sphere is a circle (1-sphere) or a line in \mathbb{R}^{2}. A generalized 2 -sphere is a sphere (2 -sphere) or a plane in \mathbb{R}^{3}.

Definition (Positively oriented)

An oriented m-sphere S is positively oriented \Longleftrightarrow the interior of S contains the center of S.

Inversive Coordinates

Definition

Given an oriented generalized m-sphere S, we define the following:

- If S is not a hyperplane, then the bend $\beta(S)$ of S is
$1 /($ radius of S), taken to be positive if S is positively oriented and negative otherwise.
If S is a hyperplane, then its bend is $\beta(S)=0$.

Inversive Coordinates

Definition

Given an oriented generalized m-sphere S, we define the following:

- If S is not a hyperplane, then the bend $\beta(S)$ of S is $1 /($ radius of S), taken to be positive if S is positively oriented and negative otherwise. If S is a hyperplane, then its bend is $\beta(S)=0$.
- The co-bend $\hat{\beta}(S)$ of S is the bend of the reflection of S in the unit m-sphere.

Inversive Coordinates

Definition

Given an oriented generalized m-sphere S, we define the following:

- If S is not a hyperplane, then the bend $\beta(S)$ of S is $1 /($ radius of $S)$, taken to be positive if S is positively oriented and negative otherwise.
If S is a hyperplane, then its bend is $\beta(S)=0$.
- The co-bend $\hat{\beta}(S)$ of S is the bend of the reflection of S in the unit m-sphere.
- If S is not a hyperplane, then the bend-center $\xi(S) \in \mathbb{R}^{m+1}$ of S is the product of the bend $\beta(S)$ and the center of S.
If S is a hyperplane, its bend-center is the unique unit normal vector to S pointing in the direction of the interior of S.

Inversive Coordinates

Definition

Given an oriented generalized m-sphere S, we define the following:

- If S is not a hyperplane, then the bend $\beta(S)$ of S is $1 /($ radius of $S)$, taken to be positive if S is positively oriented and negative otherwise.
If S is a hyperplane, then its bend is $\beta(S)=0$.
- The co-bend $\hat{\beta}(S)$ of S is the bend of the reflection of S in the unit m-sphere.
- If S is not a hyperplane, then the bend-center $\xi(S) \in \mathbb{R}^{m+1}$ of S is the product of the bend $\beta(S)$ and the center of S.
If S is a hyperplane, its bend-center is the unique unit normal vector to S pointing in the direction of the interior of S.
- The inversive coordinates of S is the ordered triple $(\beta(S), \hat{\beta}(S), \xi(S))$.

Inversive Coordinates Example 1

Inversive Coordinates Example 1

- $\beta(S)=\frac{1}{2}$

Inversive Coordinates Example 1

- $\beta(S)=\frac{1}{2}$
- $\hat{\beta}(S)=6$

Inversive Coordinates Example 1

- $\beta(S)=\frac{1}{2}$
- $\hat{\beta}(S)=6$
- $\xi(S)=\frac{1}{2}(4,0)=(2,0)$
$\sim 2+0 i=2$

Inversive Coordinates Example 2

Inversive Coordinates Example 2

- $\beta(S)=0$

Inversive Coordinates Example 2

- $\beta(S)=0$
- $\hat{\beta}(S)=2$

Inversive Coordinates Example 2

- $\beta(S)=0$
- $\hat{\beta}(S)=2$
- $\xi(S)=(0,1) \sim 0+i=i$

Inversive Coordinates Uniquely Describe an Oriented Generalized m-Sphere

For an oriented m-sphere S,

- the radius of S is $|1 / \beta(S)|$
- the center of S is $\xi(S) / \beta(S)$
- the orientation of S is indicated by the sign of $\beta(S)$

Inversive Coordinates Uniquely Describe an Oriented Generalized m-Sphere

For an oriented hyperplane S,

- $\xi(S)$ is the unit normal vector to S pointing in the direction of the interior of S.

Inversive Coordinates Uniquely Describe an Oriented Generalized m-Sphere

For an oriented hyperplane S,

- $\xi(S)$ is the unit normal vector to S pointing in the direction of the interior of S.
- $\frac{\hat{\beta}(S)}{2} \xi(S)$ is the closest point on S to the origin

Theorem
For an oriented generalized m-sphere S, we have

$$
\beta(S) \hat{\beta}(S)-|\xi(S)|^{2}=-1
$$

Theorem
For an oriented generalized m-sphere S, we have

$$
\beta(S) \hat{\beta}(S)-|\xi(S)|^{2}=-1 .
$$

Proof sketch:

- If S is a hyperplane, then statement is true.

Theorem

For an oriented generalized m-sphere S, we have

$$
\beta(S) \hat{\beta}(S)-|\xi(S)|^{2}=-1 .
$$

Proof sketch:

- If S is a hyperplane, then statement is true.
- If S is an m-sphere, solve for $\hat{\beta}(S)$ in terms of $\beta(S)$ and $\xi(S)$.

Möbius Transformations and Inversive Coordinates on \mathbb{C}

Theorem (Stange, 2017)

Let

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}(2, \mathbb{C})
$$

Then $S=g(\widehat{\mathbb{R}})$ has the following inversive coordinates:

- bend $\beta(S)=i(c \bar{d}-d \bar{c})$
- co-bend $\hat{\beta}(S)=i(a \bar{b}-b \bar{a})$
- bend-center $\xi(S)=i(a \bar{d}-b \bar{c})$

Möbius Transformations and Inversive Coordinates on \mathbb{C}

 Example
Example

$$
g=\left(\begin{array}{cc}
2+i & 1-i \\
i & 1
\end{array}\right) \in \operatorname{SL}(2, \mathbb{C})
$$

Then $g(\widehat{\mathbb{R}})$ has the following inversive coordinates:

- $\beta(S)=i(i \overline{1}-1 \bar{i})=-2$
- $\hat{\beta}(S)=i((2+i) \overline{(1-i)}-(1-i) \overline{(2+i)})=-6$
- $\xi(S)=i((2+i) \overline{1}-(1-i) \bar{i})=-2+3 i$

Möbius Transformations and Inversive Coordinates on \mathbb{C}

- What about $g(C)$ for an arbitrary generalized circle C ?

Möbius Transformations and Inversive Coordinates on \mathbb{C}

- What about $g(C)$ for an arbitrary generalized circle C ?
- What about spheres in higher dimensions?

Clifford Algebras

Definition

The Clifford algebra C_{m} is the real associative algebra generated by m elements $i_{1}, i_{2}, \ldots, i_{m}$ subject to the relations:

- $i_{\ell}^{2}=-1(1 \leq \ell \leq m)$
- $i_{h} i_{\ell}=-i_{\ell} i_{h}(1 \leq h, \ell \leq m, h \neq \ell)$

Clifford Algebras

Definition

The Clifford algebra C_{m} is the real associative algebra generated by m elements $i_{1}, i_{2}, \ldots, i_{m}$ subject to the relations:

- $i_{\ell}^{2}=-1(1 \leq \ell \leq m)$
- $i_{h} i_{\ell}=-i_{\ell} i_{h}(1 \leq h, \ell \leq m, h \neq \ell)$

Examples (Some Elements in C_{m})

- $1+i_{1}+i_{1} i_{2} \in C_{2}$
- $2+i_{1} i_{2} i_{3} \in C_{3}$

Clifford Algebras

- Every $a \in C_{m}$ can be expressed uniquely in the form

$$
a=\sum_{l} a_{l} l
$$

where the sum ranges over all products $I=i_{\nu_{1}} i_{\nu_{2}} \cdots i_{\nu_{k}}$, $1 \leq \nu_{1}<\nu_{2}<\cdots<\nu_{k} \leq m, a_{l} \in \mathbb{R}$, and empty product allowed

Clifford Algebras

- Every $a \in C_{m}$ can be expressed uniquely in the form

$$
a=\sum_{l} a_{l} l,
$$

where the sum ranges over all products $I=i_{\nu_{1}} i_{\nu_{2}} \cdots i_{\nu_{k}}$, $1 \leq \nu_{1}<\nu_{2}<\cdots<\nu_{k} \leq m, a_{l} \in \mathbb{R}$, and empty product allowed

- norm $|a|^{2}=\sum_{l} a_{l}^{2}$

Clifford Algebras

- Every $a \in C_{m}$ can be expressed uniquely in the form

$$
a=\sum_{l} a_{l} l
$$

where the sum ranges over all products $I=i_{\nu_{1}} i_{\nu_{2}} \cdots i_{\nu_{k}}$, $1 \leq \nu_{1}<\nu_{2}<\cdots<\nu_{k} \leq m, a_{l} \in \mathbb{R}$, and empty product allowed

- norm $|a|^{2}=\sum_{l} a_{l}^{2}$
- C_{m} is a vector space of dimension 2^{m} over \mathbb{R}

Clifford Algebras

- Every $a \in C_{m}$ can be expressed uniquely in the form

$$
a=\sum_{l} a_{l} l
$$

where the sum ranges over all products $I=i_{\nu_{1}} i_{\nu_{2}} \cdots i_{\nu_{k}}$, $1 \leq \nu_{1}<\nu_{2}<\cdots<\nu_{k} \leq m, a_{l} \in \mathbb{R}$, and empty product allowed

- norm $|a|^{2}=\sum_{l} a_{l}^{2}$
- C_{m} is a vector space of dimension 2^{m} over \mathbb{R}

Clifford Algebras

- Every $a \in C_{m}$ can be expressed uniquely in the form

$$
a=\sum_{l} a_{l} l,
$$

where the sum ranges over all products $I=i_{\nu_{1}} i_{\nu_{2}} \cdots i_{\nu_{k}}$, $1 \leq \nu_{1}<\nu_{2}<\cdots<\nu_{k} \leq m, a_{l} \in \mathbb{R}$, and empty product allowed

- norm $|a|^{2}=\sum_{l} a_{l}^{2}$
- C_{m} is a vector space of dimension 2^{m} over \mathbb{R}

Examples (C_{m} for some m)

- $C_{0}=\mathbb{R}$

Clifford Algebras

- Every $a \in C_{m}$ can be expressed uniquely in the form

$$
a=\sum_{l} a_{l} l
$$

where the sum ranges over all products $I=i_{\nu_{1}} i_{\nu_{2}} \cdots i_{\nu_{k}}$, $1 \leq \nu_{1}<\nu_{2}<\cdots<\nu_{k} \leq m, a_{l} \in \mathbb{R}$, and empty product allowed

- norm $|a|^{2}=\sum_{l} a_{l}^{2}$
- C_{m} is a vector space of dimension 2^{m} over \mathbb{R}

Examples (C_{m} for some m)

- $C_{0}=\mathbb{R}$
- $C_{1} \cong \mathbb{C}, z_{0}+z_{1} i_{1} \leftrightarrow z_{0}+z_{1} i$

Clifford Algebras

- Every $a \in C_{m}$ can be expressed uniquely in the form

$$
a=\sum_{l} a_{l} l,
$$

where the sum ranges over all products $I=i_{\nu_{1}} i_{\nu_{2}} \cdots i_{\nu_{k}}$, $1 \leq \nu_{1}<\nu_{2}<\cdots<\nu_{k} \leq m, a_{l} \in \mathbb{R}$, and empty product allowed

- norm $|a|^{2}=\sum_{l} a_{l}^{2}$
- C_{m} is a vector space of dimension 2^{m} over \mathbb{R}

Examples (C_{m} for some m)

- $C_{0}=\mathbb{R}$
- $C_{1} \cong \mathbb{C}, z_{0}+z_{1} i_{1} \leftrightarrow z_{0}+z_{1} i$
- $C_{2} \cong \mathbb{H}, z_{0}+z_{1} i_{1}+z_{2} i_{2}+z_{12} i_{1} i_{2} \leftrightarrow z_{0}+z_{1} i+z_{2} j+z_{12} k$

Clifford Algebras

- Every $a \in C_{m}$ can be expressed uniquely in the form

$$
a=\sum_{l} a_{l} l,
$$

where the sum ranges over all products $I=i_{\nu_{1}} i_{\nu_{2}} \cdots i_{\nu_{k}}$, $1 \leq \nu_{1}<\nu_{2}<\cdots<\nu_{k} \leq m, a_{l} \in \mathbb{R}$, and empty product allowed

- norm $|a|^{2}=\sum_{l} a_{l}^{2}$
- C_{m} is a vector space of dimension 2^{m} over \mathbb{R}

Examples (C_{m} for some m)

- $C_{0}=\mathbb{R}$
- $C_{1} \cong \mathbb{C}, z_{0}+z_{1} i_{1} \leftrightarrow z_{0}+z_{1} i$
- $C_{2} \cong \mathbb{H}, z_{0}+z_{1} i_{1}+z_{2} i_{2}+z_{12} i_{1} i_{2} \leftrightarrow z_{0}+z_{1} i+z_{2} j+z_{12} k$
- $C_{3} \cong \mathbb{H} \oplus \mathbb{H}$

Involutions on Clifford Algebras

(1) *: each $i_{\nu_{1}} i_{\nu_{2}} \cdots i_{\nu_{k}} \mapsto i_{\nu_{k}} \cdots i_{\nu_{2}} i_{\nu_{1}}$ anti-automorphism: $(a+b)^{*}=a^{*}+b^{*}$ and $(a b)^{*}=b^{*} a^{*}$

Involutions on Clifford Algebras

(1) *: each $i_{\nu_{1}} i_{\nu_{2}} \cdots i_{\nu_{k}} \mapsto i_{\nu_{k}} \cdots i_{\nu_{2}} i_{\nu_{1}}$ anti-automorphism: $(a+b)^{*}=a^{*}+b^{*}$ and $(a b)^{*}=b^{*} a^{*}$
(2) ': each $i_{\ell} \mapsto-i_{\ell}$
automorphism: $(a+b)^{\prime}=a^{\prime}+b^{\prime}$ and $(a b)^{\prime}=a^{\prime} b^{\prime}$

Involutions on Clifford Algebras

(1) *: each $i_{\nu_{1}} i_{\nu_{2}} \cdots i_{\nu_{k}} \mapsto i_{\nu_{k}} \cdots i_{\nu_{2}} i_{\nu_{1}}$ anti-automorphism: $(a+b)^{*}=a^{*}+b^{*}$ and $(a b)^{*}=b^{*} a^{*}$
(2) ': each $i_{\ell} \mapsto-i_{\ell}$
automorphism: $(a+b)^{\prime}=a^{\prime}+b^{\prime}$ and $(a b)^{\prime}=a^{\prime} b^{\prime}$
(3) ${ }^{-}: a \mapsto \bar{a}=\left(a^{\prime}\right)^{*}=\left(a^{*}\right)^{\prime}$
anti-automorphism: $\overline{(a+b)}=\bar{a}+\bar{b}$ and $\overline{a b}=\bar{b} \bar{a}$

Involutions on Clifford Algebras

(1) *: each $i_{\nu_{1}} i_{\nu_{2}} \cdots i_{\nu_{k}} \mapsto i_{\nu_{k}} \cdots i_{\nu_{2}} i_{\nu_{1}}$ anti-automorphism: $(a+b)^{*}=a^{*}+b^{*}$ and $(a b)^{*}=b^{*} a^{*}$
(2) ': each $i_{\ell} \mapsto-i_{\ell}$
automorphism: $(a+b)^{\prime}=a^{\prime}+b^{\prime}$ and $(a b)^{\prime}=a^{\prime} b^{\prime}$
(3) ${ }^{-}: a \mapsto \bar{a}=\left(a^{\prime}\right)^{*}=\left(a^{*}\right)^{\prime}$
anti-automorphism: $\overline{(a+b)}=\bar{a}+\bar{b}$ and $\overline{a b}=\bar{b} \bar{a}$

Example

$$
a=1+2 i_{1}+3 i_{1} i_{2}
$$

Involutions on Clifford Algebras

(1) *: each $i_{\nu_{1}} i_{\nu_{2}} \cdots i_{\nu_{k}} \mapsto i_{\nu_{k}} \cdots i_{\nu_{2}} i_{\nu_{1}}$ anti-automorphism: $(a+b)^{*}=a^{*}+b^{*}$ and $(a b)^{*}=b^{*} a^{*}$
(2) ': each $i_{\ell} \mapsto-i_{\ell}$
automorphism: $(a+b)^{\prime}=a^{\prime}+b^{\prime}$ and $(a b)^{\prime}=a^{\prime} b^{\prime}$
(3) ${ }^{-}: a \mapsto \bar{a}=\left(a^{\prime}\right)^{*}=\left(a^{*}\right)^{\prime}$
anti-automorphism: $\overline{(a+b)}=\bar{a}+\bar{b}$ and $\overline{a b}=\bar{b} \bar{a}$

Example

$$
\begin{aligned}
a= & 1+2 i_{1}+3 i_{1} i_{2} \\
& \bullet a^{*}=1+2 i_{1}+3 i_{2} i_{1}=1+2 i_{1}-3 i_{1} i_{2}
\end{aligned}
$$

Involutions on Clifford Algebras

(1) *: each $i_{\nu_{1}} i_{\nu_{2}} \cdots i_{\nu_{k}} \mapsto i_{\nu_{k}} \cdots i_{\nu_{2}} i_{\nu_{1}}$ anti-automorphism: $(a+b)^{*}=a^{*}+b^{*}$ and $(a b)^{*}=b^{*} a^{*}$
(2) ': each $i_{\ell} \mapsto-i_{\ell}$
automorphism: $(a+b)^{\prime}=a^{\prime}+b^{\prime}$ and $(a b)^{\prime}=a^{\prime} b^{\prime}$
(3) ${ }^{-}: a \mapsto \bar{a}=\left(a^{\prime}\right)^{*}=\left(a^{*}\right)^{\prime}$
anti-automorphism: $\overline{(a+b)}=\bar{a}+\bar{b}$ and $\overline{a b}=\bar{b} \bar{a}$

Example

$$
\begin{aligned}
a & =1+2 i_{1}+3 i_{1} i_{2} \\
& \text { - } a^{*}=1+2 i_{1}+3 i_{2} i_{1}=1+2 i_{1}-3 i_{1} i_{2} \\
& \text { - } a^{\prime}=1-2 i_{1}+3\left(-i_{1}\right)\left(-i_{2}\right)=1-2 i_{1}+3 i_{1} i_{2}
\end{aligned}
$$

Involutions on Clifford Algebras

(1) *: each $i_{\nu_{1}} i_{\nu_{2}} \cdots i_{\nu_{k}} \mapsto i_{\nu_{k}} \cdots i_{\nu_{2}} i_{\nu_{1}}$ anti-automorphism: $(a+b)^{*}=a^{*}+b^{*}$ and $(a b)^{*}=b^{*} a^{*}$
(2) ': each $i_{\ell} \mapsto-i_{\ell}$
automorphism: $(a+b)^{\prime}=a^{\prime}+b^{\prime}$ and $(a b)^{\prime}=a^{\prime} b^{\prime}$
(3) ${ }^{-}: a \mapsto \bar{a}=\left(a^{\prime}\right)^{*}=\left(a^{*}\right)^{\prime}$
anti-automorphism: $\overline{(a+b)}=\bar{a}+\bar{b}$ and $\overline{a b}=\bar{b} \bar{a}$

Example

$$
\begin{aligned}
a & =1+2 i_{1}+3 i_{1} i_{2} \\
& \text { - } a^{*}=1+2 i_{1}+3 i_{2} i_{1}=1+2 i_{1}-3 i_{1} i_{2} \\
& \text { - } a^{\prime}=1-2 i_{1}+3\left(-i_{1}\right)\left(-i_{2}\right)=1-2 i_{1}+3 i_{1} i_{2} \\
& \text { - } \bar{a}=1-2 i_{1}-3 i_{1} i_{2}
\end{aligned}
$$

Involutions on Clifford Algebras

(1) *: each $i_{\nu_{1}} i_{\nu_{2}} \cdots i_{\nu_{k}} \mapsto i_{\nu_{k}} \cdots i_{\nu_{2}} i_{\nu_{1}}$ anti-automorphism: $(a+b)^{*}=a^{*}+b^{*}$ and $(a b)^{*}=b^{*} a^{*}$
(2) ': each $i_{\ell} \mapsto-i_{\ell}$ automorphism: $(a+b)^{\prime}=a^{\prime}+b^{\prime}$ and $(a b)^{\prime}=a^{\prime} b^{\prime}$
(3) ${ }^{-}: a \mapsto \bar{a}=\left(a^{\prime}\right)^{*}=\left(a^{*}\right)^{\prime}$
anti-automorphism: $\overline{(a+b)}=\bar{a}+\bar{b}$ and $\overline{a b}=\bar{b} \bar{a}$

Example

$$
\begin{aligned}
a & =1+2 i_{1}+3 i_{1} i_{2} \\
& \text { - } a^{*}=1+2 i_{1}+3 i_{2} i_{1}=1+2 i_{1}-3 i_{1} i_{2} \\
& \text { - } a^{\prime}=1-2 i_{1}+3\left(-i_{1}\right)\left(-i_{2}\right)=1-2 i_{1}+3 i_{1} i_{2} \\
& \text { - } \bar{a}=1-2 i_{1}-3 i_{1} i_{2} \\
& \text { - }|a|^{2}=1^{2}+2^{2}+3^{2}=14=a \bar{a}=\bar{a} a
\end{aligned}
$$

Clifford Vectors

$$
\begin{aligned}
V_{m}:=\left\{v_{0}+v_{1} i_{1}+\cdots+v_{m} i_{m}\right\} & \cong \mathbb{R}^{m+1} \\
v_{0}+v_{1} i_{1}+\cdots+v_{m} i_{m} & \leftrightarrow\left(v_{0}, v_{1}, \ldots, v_{m}\right)
\end{aligned}
$$

Clifford Vectors

$$
\begin{aligned}
V_{m}:= & \left\{v_{0}+v_{1} i_{1}+\cdots+v_{m} i_{m}\right\} \cong \mathbb{R}^{m+1} \\
& v_{0}+v_{1} i_{1}+\cdots+v_{m} i_{m} \leftrightarrow\left(v_{0}, v_{1}, \ldots, v_{m}\right) \\
\widehat{V_{m}}:= & v_{m} \cup\{\infty\} \cong \mathbb{R}^{m+1} \cup\{\infty\}=\widehat{\mathbb{R}^{m+1}}
\end{aligned}
$$

Clifford Vectors

$$
\begin{aligned}
V_{m}:= & \left\{v_{0}+v_{1} i_{1}+\cdots+v_{m} i_{m}\right\} \cong \mathbb{R}^{m+1} \\
& v_{0}+v_{1} i_{1}+\cdots+v_{m} i_{m} \leftrightarrow\left(v_{0}, v_{1}, \ldots, v_{m}\right) \\
\widehat{V_{m}}:= & v_{m} \cup\{\infty\} \cong \mathbb{R}^{m+1} \cup\{\infty\}=\widehat{\mathbb{R}^{m+1}}
\end{aligned}
$$

Some properties of Clifford vector $v \in V_{m}$:

- $v^{*}=v$

Clifford Vectors

$$
\begin{aligned}
V_{m}:= & \left\{v_{0}+v_{1} i_{1}+\cdots+v_{m} i_{m}\right\} \cong \mathbb{R}^{m+1} \\
& v_{0}+v_{1} i_{1}+\cdots+v_{m} i_{m} \leftrightarrow\left(v_{0}, v_{1}, \ldots, v_{m}\right) \\
\widehat{V_{m}}:= & v_{m} \cup\{\infty\} \cong \mathbb{R}^{m+1} \cup\{\infty\}=\widehat{\mathbb{R}^{m+1}}
\end{aligned}
$$

Some properties of Clifford vector $v \in V_{m}$:

- $v^{*}=v$
- $\bar{v}=v^{\prime}$

Clifford Vectors

$$
\begin{aligned}
V_{m}:= & \left\{v_{0}+v_{1} i_{1}+\cdots+v_{m} i_{m}\right\} \cong \mathbb{R}^{m+1} \\
& v_{0}+v_{1} i_{1}+\cdots+v_{m} i_{m} \leftrightarrow\left(v_{0}, v_{1}, \ldots, v_{m}\right) \\
\widehat{V_{m}}:= & v_{m} \cup\{\infty\} \cong \mathbb{R}^{m+1} \cup\{\infty\}=\widehat{\mathbb{R}^{m+1}}
\end{aligned}
$$

Some properties of Clifford vector $v \in V_{m}$:

- $v^{*}=v$
- $\bar{v}=v^{\prime}$
- $|v|^{2}=v \bar{v}=\bar{v} v$

Clifford Group

$|v|^{2}=v \bar{v}=\bar{v} v$
\Longrightarrow nonzero vectors are invertible with $v^{-1}=\bar{v} /|v|^{2}$

Clifford Group

$|v|^{2}=v \bar{v}=\bar{v} v$
\Longrightarrow nonzero vectors are invertible with $v^{-1}=\bar{v} /|v|^{2}$
\Longrightarrow Clifford group $\Gamma_{m}:=\{$ products of nonzero vectors $\}$ is a multiplicative group

Clifford Group

$|v|^{2}=v \bar{v}=\bar{v} v$
\Longrightarrow nonzero vectors are invertible with $v^{-1}=\bar{v} /|v|^{2}$
\Longrightarrow Clifford group $\Gamma_{m}:=\{$ products of nonzero vectors $\}$ is a multiplicative group

Some properties of the Clifford group $\Gamma_{m}, a, b \in \Gamma_{m}$:

- $|a|^{2}=a \bar{a}=\bar{a} a$

Clifford Group

$|v|^{2}=v \bar{v}=\bar{v} v$
\Longrightarrow nonzero vectors are invertible with $v^{-1}=\bar{v} /|v|^{2}$
\Longrightarrow Clifford group $\Gamma_{m}:=$ \{products of nonzero vectors $\}$ is a multiplicative group

Some properties of the Clifford group $\Gamma_{m}, a, b \in \Gamma_{m}$:

- $|a|^{2}=a \bar{a}=\bar{a} a$
- $a^{-1}=\bar{a} /|a|^{2}$

Clifford Group

$|v|^{2}=v \bar{v}=\bar{v} v$
\Longrightarrow nonzero vectors are invertible with $v^{-1}=\bar{v} /|v|^{2}$
\Longrightarrow Clifford group $\Gamma_{m}:=$ \{products of nonzero vectors $\}$ is a multiplicative group

Some properties of the Clifford group $\Gamma_{m}, a, b \in \Gamma_{m}$:

- $|a|^{2}=a \bar{a}=\bar{a} a$
- $a^{-1}=\bar{a} /|a|^{2}$
- $|a b|=|a||b|$

Clifford Matrices

Definition

For $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a, b, c, d \in C_{m}$, define the pseudo-determinant $\Delta(g)$ as

$$
\Delta(g)=a d^{*}-b c^{*}
$$

Clifford Matrices

Definition

For $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a, b, c, d \in C_{m}$, define the pseudo-determinant $\Delta(g)$ as

$$
\Delta(g)=a d^{*}-b c^{*}
$$

$$
\begin{aligned}
\mathrm{GL}\left(2, C_{m}\right):=\{g= & \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \Gamma_{m} \cup\{0\}, \\
& \left.a b^{*}, c d^{*}, c^{*} a, d^{*} b \in V_{m}, \Delta(g) \in \mathbb{R} \backslash\{0\}\right\}
\end{aligned}
$$

Clifford Matrices

Definition

For $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a, b, c, d \in C_{m}$, define the pseudo-determinant $\Delta(g)$ as

$$
\Delta(g)=a d^{*}-b c^{*}
$$

$$
\begin{aligned}
\mathrm{GL}\left(2, C_{m}\right):=\{g= & \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \Gamma_{m} \cup\{0\}, \\
& \left.a b^{*}, c d^{*}, c^{*} a, d^{*} b \in V_{m}, \Delta(g) \in \mathbb{R} \backslash\{0\}\right\}
\end{aligned}
$$

For $g, h \in \mathrm{GL}\left(2, C_{m}\right), \Delta(g h)=\Delta(g) \Delta(h)$.

Clifford Matrices and Möbius Transformations

$$
\begin{aligned}
\mathrm{GL}\left(2, C_{m}\right): \widehat{V_{m}} & \rightarrow \widehat{V_{m}} \\
z & \mapsto g(z)=(a z+b)(c z+d)^{-1}, \\
& g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{GL}\left(2, C_{m}\right)
\end{aligned}
$$

Clifford Matrices and Möbius Transformations

$$
\begin{aligned}
\mathrm{GL}\left(2, C_{m}\right): \widehat{V_{m}} & \rightarrow \widehat{V_{m}} \\
z & \mapsto g(z)=(a z+b)(c z+d)^{-1}, \\
& g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{GL}\left(2, C_{m}\right)
\end{aligned}
$$

Also act on $\widehat{V_{m}}$:

$$
\begin{aligned}
\operatorname{SL}\left(2, C_{m}\right) & :=\left\{g \in \operatorname{GL}\left(2, C_{m}\right): \Delta(g)=1\right\} \\
\operatorname{PSL}\left(2, C_{m}\right) & :=\operatorname{SL}\left(2, C_{m}\right) /\left\{ \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\}
\end{aligned}
$$

Clifford Matrices and Möbius Transformations

Theorem (Ahlfors, 1985)

The group $\operatorname{PSL}\left(2, C_{m}\right)$ is isomorphic to the group of orientation-preserving Möbius transformations on \mathbb{R}^{m+1}. The group $\operatorname{PSL}\left(2, C_{m}\right)$ is generated by the matrices

$$
\left(\begin{array}{cc}
a & 0 \\
0 & \left(a^{*}\right)^{-1}
\end{array}\right),\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),
$$

with $a \in \Gamma_{m}$ and $b \in V_{m}$.

Clifford Matrices and Möbius Transformations

Theorem (Ahlfors, 1985)

The group $\operatorname{PSL}\left(2, C_{m}\right)$ is isomorphic to the group of orientation-preserving Möbius transformations on \mathbb{R}^{m+1}. The group PSL $\left(2, C_{m}\right)$ is generated by the matrices

$$
\left(\begin{array}{cc}
a & 0 \\
0 & \left(a^{*}\right)^{-1}
\end{array}\right),\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),
$$

with $a \in \Gamma_{m}$ and $b \in V_{m}$.

Corollary

The group $\mathrm{SL}\left(2, C_{m}\right)$ is generated by the matrices

$$
\left(\begin{array}{cc}
a & 0 \\
0 & \left(a^{*}\right)^{-1}
\end{array}\right),\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),
$$

with $a \in \Gamma_{m}$ and $b \in V_{m}$.

Clifford Matrices and Möbius Transformations

$\left(\begin{array}{cc}a & 0 \\ 0 & \left(a^{*}\right)^{-1}\end{array}\right): z \mapsto a z a^{*}$
corresponds to a rotation associated to a followed by a dilation by $|a|^{2}$.

Clifford Matrices and Möbius Transformations

$\left(\begin{array}{cc}a & 0 \\ 0 & \left(a^{*}\right)^{-1}\end{array}\right): z \mapsto a z a^{*}$
corresponds to a rotation associated to a followed by a dilation by $|a|^{2}$.

Clifford Matrices and Möbius Transformations

$$
\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right): z \mapsto z+b
$$

corresponds to a translation by b.

Clifford Matrices and Möbius Transformations

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right): z \mapsto-z^{-1} .
$$

corresponds to a reflection in the unit m-sphere followed by a reflection in the hyperplane $z_{0}=0$.

Clifford Matrices and Möbius Transformations

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right): z \mapsto-z^{-1} .
$$

corresponds to a reflection in the unit m-sphere followed by a reflection in the hyperplane $z_{0}=0$.

Inversive-Coordinate Matrix

Definition

Given an oriented generalized m-sphere S, the inversive-coordinate matrix of S is the 2×2 matrix

$$
M_{S}:=\left(\begin{array}{ll}
\hat{\beta}(S) & \xi(S) \\
\xi(S) & \beta(S)
\end{array}\right)
$$

Inversive-Coordinate Matrix

Definition

Given an oriented generalized m-sphere S, the inversive-coordinate matrix of S is the 2×2 matrix

$$
M_{S}:=\left(\begin{array}{ll}
\hat{\beta}(S) & \xi(S) \\
\xi(S) & \beta(S)
\end{array}\right)
$$

- $\left(\overline{M_{S}}\right)^{\top}=M_{S}$

Inversive-Coordinate Matrix

Definition

Given an oriented generalized m-sphere S, the inversive-coordinate matrix of S is the 2×2 matrix

$$
M_{S}:=\left(\begin{array}{ll}
\hat{\beta}(S) & \xi(S) \\
\overline{\xi(S)} & \beta(S)
\end{array}\right)
$$

- $\left(\overline{M_{S}}\right)^{\top}=M_{S}$
- $\Delta\left(M_{S}\right)=\hat{\beta}(S)(\beta(S))^{*}-\xi(S)(\overline{\xi(S)})^{*}=-1$ since

$$
\beta(S) \hat{\beta}(S)-|\xi(S)|^{2}=-1
$$

Inversive Coordinates Example 1

- $\beta(S)=\frac{1}{2}$
- $\hat{\beta}(S)=6$
- $\xi(S)=\frac{1}{2}(4,0)=(2,0)$

$$
\sim 2+0 i=2
$$

- $M_{S}=\left(\begin{array}{ll}6 & 2 \\ 2 & \frac{1}{2}\end{array}\right)$

Inversive Coordinates Example 2

- $\beta(S)=0$
- $\hat{\beta}(S)=2$
- $\xi(S)=(0,1) \sim 0+i=i$
- $M_{S}=\left(\begin{array}{cc}2 & i \\ -i & 0\end{array}\right)$

Möbius Transformations and Inversive-Coordinate Matrix

Theorem (J., 2020)

The group $\operatorname{SL}\left(2, C_{m}\right)$ acts on the set of inversive-coordinate matrices by

$$
g . M:=g M \bar{g}^{\top}
$$

for an inversive-coordinate matrix M and $g \in \operatorname{SL}\left(2, C_{m}\right)$. The group action of $\mathrm{SL}\left(2, C_{m}\right)$ on the set of inversive-coordinate matrices is equivalent to the group action of $\operatorname{SL}\left(2, C_{m}\right)$ on the set of oriented generalized m-spheres. That is, if S is an oriented generalized m-sphere and $g \in \operatorname{SL}\left(2, C_{m}\right)$, then

$$
M_{g(S)}=g \cdot M_{S}
$$

Extends works that Sheydvasser did for $m=2$ in 2019.

Proof Outline

(1) Check that $g \cdot M=g M \bar{g}^{\top}$ is a group action of $\operatorname{SL}\left(2, C_{m}\right)$ on the set of inversive-coordinate matrices.

Proof Outline

(1) Check that $g \cdot M=g M \bar{g}^{\top}$ is a group action of $\operatorname{SL}\left(2, C_{m}\right)$ on the set of inversive-coordinate matrices.

- $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \cdot M=M$

Proof Outline

(1) Check that $g \cdot M=g M \bar{g}^{\top}$ is a group action of $\operatorname{SL}\left(2, C_{m}\right)$ on the set of inversive-coordinate matrices.

- $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \cdot M=M$
- $(g h) \cdot M=(g h) M \overline{(g h)}^{\top}=g\left(h M \bar{h}^{\top}\right) \bar{g}^{\top}=g$.(h.M) for $g, h \in \operatorname{SL}\left(2, C_{m}\right)$
(1) Check that $g \cdot M=g M \bar{g}^{\top}$ is a group action of $\operatorname{SL}\left(2, C_{m}\right)$ on the set of inversive-coordinate matrices.

$$
\begin{aligned}
& -\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cdot M=M \\
& \text { - }(g h) \cdot M=(g h) M \overline{(g h)}^{\top}=g\left(h M \bar{h}^{\top}\right) \bar{g}^{\top}=g \cdot(h \cdot M) \text { for } \\
& g, h \in \operatorname{SL}\left(2, C_{m}\right)
\end{aligned}
$$

(2) Verify that $M_{g(S)}=g . M_{S}$ for any oriented generalized m-sphere S and for any generator g of $\operatorname{SL}\left(2, C_{m}\right)$.

Proof Outline for Translation $z \mapsto z+b$

$$
\begin{aligned}
& g=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \text { for some fixed } b \in V_{m} \text { and } M_{S_{0}}=\left(\begin{array}{ll}
\hat{\beta} & \xi \\
\bar{\xi} & \beta
\end{array}\right) . \\
& g: z \mapsto z+b
\end{aligned}
$$

Proof Outline for Translation $z \mapsto z+b$

$$
\begin{aligned}
& g=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \text { for some fixed } b \in V_{m} \text { and } M_{S_{0}}=\left(\begin{array}{ll}
\hat{\beta} & \xi \\
\bar{\xi} & \beta
\end{array}\right) . \\
& g: z \mapsto z+b \\
& \Longrightarrow \beta \mapsto \beta
\end{aligned}
$$

Proof Outline for Translation $z \mapsto z+b$

$$
\begin{aligned}
& g=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \text { for some fixed } b \in V_{m} \text { and } M_{S_{0}}=\left(\begin{array}{ll}
\hat{\beta} & \xi \\
\bar{\xi} & \beta
\end{array}\right) . \\
& g: z \mapsto z+b
\end{aligned}
$$

$\Longrightarrow \beta \mapsto \beta$ and $\xi \mapsto \xi+\beta b$.

Proof Outline for Translation $z \mapsto z+b$
$g=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$ for some fixed $b \in V_{m}$ and $M_{S_{0}}=\left(\begin{array}{ll}\hat{\beta} & \xi \\ \bar{\xi} & \beta\end{array}\right)$. $g: z \mapsto z+b$

$\Longrightarrow \beta \mapsto \beta$ and $\xi \mapsto \xi+\beta b$.
If $\beta \neq 0$, we can apply $\beta(S) \hat{\beta}(S)-|\xi(S)|^{2}=-1$ and see that
$\hat{\beta} \mapsto \hat{\beta}+b \bar{\xi}+\xi \bar{b}+\beta|b|^{2}$.
$g=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$ for some fixed $b \in V_{m}$ and $M_{S_{0}}=\left(\begin{array}{cc}\hat{\beta} & \xi \\ \bar{\xi} & \beta\end{array}\right)$. $g: z \mapsto z+b$

$\Longrightarrow \beta \mapsto \beta$ and $\xi \mapsto \xi+\beta b$.
If $\beta \neq 0$, we can apply $\beta(S) \hat{\beta}(S)-|\xi(S)|^{2}=-1$ and see that
$\hat{\beta} \mapsto \hat{\beta}+b \bar{\xi}+\xi \bar{b}+\beta|b|^{2}$.
If $\beta=0$, we can use the fact that $\frac{\hat{\beta}(S)}{2} \xi(S)$ is the closest point on a hyperplane S to the origin and see that $\hat{\beta} \mapsto \hat{\beta}+b \bar{\xi}+\xi \bar{b}+\beta|b|^{2}$.

Proof Outline for Translation $z \mapsto z+b$

$$
\begin{aligned}
& g=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \text { for some fixed } b \in V_{m} . \\
& g: z \mapsto z+b \\
& \Longrightarrow \beta \mapsto \beta, \quad \xi \mapsto \xi+\beta b, \quad \bar{\xi} \mapsto \bar{\xi}+\beta \bar{b}, \\
& \hat{\beta} \mapsto \hat{\beta}+b \bar{\xi}+\xi \bar{b}+\beta|b|^{2} .
\end{aligned}
$$

$g=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$ for some fixed $b \in V_{m}$.
$g: z \mapsto z+b$
$\Longrightarrow \beta \mapsto \beta, \quad \xi \mapsto \xi+\beta b, \quad \bar{\xi} \mapsto \bar{\xi}+\beta \bar{b}$,
$\hat{\beta} \mapsto \hat{\beta}+b \bar{\xi}+\xi \bar{b}+\beta|b|^{2}$.
We verify that g induces the same mapping on the inversive-coordinate matrix:

$$
\begin{aligned}
g \cdot M_{S_{0}} & =g M_{S_{0}} \bar{g}^{\top}=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\hat{\beta} & \xi \\
\bar{\xi} & \beta
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\hat{\beta}+b \bar{\xi}+\xi \bar{b}+\beta|b|^{2} & \xi+\beta b \\
\bar{\xi}+\beta \bar{b} & \beta
\end{array}\right)
\end{aligned}
$$

Möbius Transformations and Inversive Coordinates on C_{m}

Corollary (J., 2020)

Let

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}\left(2, C_{m}\right),
$$

and let S_{0} be an oriented generalized m-sphere with an inversive-coordinate matrix

$$
M_{s_{0}}=\left(\begin{array}{ll}
\hat{\beta} & \xi \\
\bar{\xi} & \beta
\end{array}\right) .
$$

Then $g\left(S_{0}\right)$ has the following inversive coordinates:

- bend $\beta\left(g\left(S_{0}\right)\right)=\hat{\beta}|c|^{2}+d \bar{\xi} \bar{c}+c \xi \bar{d}+\beta|d|^{2}$
- co-bend $\hat{\beta}\left(g\left(S_{0}\right)\right)=\hat{\beta}|a|^{2}+b \bar{\xi} \bar{a}+a \xi \bar{b}+\beta|b|^{2}$
- bend-center $\xi\left(g\left(S_{0}\right)\right)=a \hat{\beta} \bar{c}+b \bar{\xi} \bar{c}+a \xi \bar{d}+b \beta \bar{d}$

Möbius Transformations and Inversive Coordinates on C_{m}

Define $\widehat{V_{m-1}}$ be the oriented hyperplane with the inversive-coordinate matrix

$$
M_{\widehat{V_{m-1}}}=\left(\begin{array}{cc}
0 & i_{m} \\
-i_{m} & 0
\end{array}\right) .
$$

Möbius Transformations and Inversive Coordinates on C_{m}

Define $\widehat{V_{m-1}}$ be the oriented hyperplane with the inversive-coordinate matrix

$$
M_{\widehat{V_{m-1}}}=\left(\begin{array}{cc}
0 & i_{m} \\
-i_{m} & 0
\end{array}\right) .
$$

Corollary (J., 2020)

Let $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}\left(2, C_{m}\right)$.
Then $S=g\left(\widehat{V_{m-1}}\right)$ has the following inversive coordinates:

- bend $\beta(S)=c i_{m} \bar{d}-d i_{m} \bar{c}$
- co-bend $\hat{\beta}(S)=a i_{m} \bar{b}-b i_{m} \bar{a}$
- bend-center $\xi(S)=a i_{m} \bar{d}-b i_{m} \bar{c}$
- $m=1$ is Stange's result.
- $m=2$ done by Sheydvasser.

Thank you for listening!

