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Möbius Transformations on C

SL(2,C) : Ĉ→ Ĉ

z 7→ g(z) =
az + b

cz + d
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a b
c d

)
∈ SL(2,C)
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Oriented Generalized m-Spheres

Definition (Generalized m-sphere)

A generalized m-sphere is an m-sphere or a hyperplane in Rm+1.

Examples

A generalized 1-sphere is a circle (1-sphere) or a line in R2.
A generalized 2-sphere is a sphere (2-sphere) or a plane in R3.

Definition (Positively oriented)

An oriented m-sphere S is positively oriented
⇐⇒ the interior of S contains the center of S .
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Inversive Coordinates

Definition

Given an oriented generalized m-sphere S , we define the following:

If S is not a hyperplane, then the bend β(S) of S is
1/(radius of S), taken to be positive if S is positively oriented
and negative otherwise.
If S is a hyperplane, then its bend is β(S) = 0.

The co-bend β̂(S) of S is the bend of the reflection of S in
the unit m-sphere.

If S is not a hyperplane, then the bend-center ξ(S) ∈ Rm+1 of
S is the product of the bend β(S) and the center of S .
If S is a hyperplane, its bend-center is the unique unit normal
vector to S pointing in the direction of the interior of S .

The inversive coordinates of S is the ordered triple
(β(S), β̂(S), ξ(S)).
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Inversive Coordinates Example 1

R2

S

β(S) = 1
2

β̂(S) = 6

ξ(S) = 1
2(4, 0) = (2, 0)
∼ 2 + 0i = 2

Edna Jones Möbius Transformations, Bends, and Centers



Inversive Coordinates Example 1

R2

S

β(S) = 1
2

β̂(S) = 6

ξ(S) = 1
2(4, 0) = (2, 0)
∼ 2 + 0i = 2
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Inversive Coordinates Example 2

R2

S

β(S) = 0

β̂(S) = 2

ξ(S) = (0, 1) ∼ 0 + i = i
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Inversive Coordinates Uniquely Describe an Oriented
Generalized m-Sphere

For an oriented m-sphere S ,

the radius of S is |1/β(S)|
the center of S is ξ(S)/β(S)

the orientation of S is indicated by the sign of β(S)
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Inversive Coordinates Uniquely Describe an Oriented
Generalized m-Sphere

For an oriented hyperplane S ,

ξ(S) is the unit normal vector to S pointing in the direction of
the interior of S .

β̂(S)
2 ξ(S) is the closest point on S to the origin

ξ(S)

S

β̂(S)
2 ξ(S)
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Inversive Coordinates Uniquely Describe an Oriented
Generalized m-Sphere

For an oriented hyperplane S ,

ξ(S) is the unit normal vector to S pointing in the direction of
the interior of S .
β̂(S)
2 ξ(S) is the closest point on S to the origin

ξ(S)

S
β̂(S)
2 ξ(S)
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Theorem

For an oriented generalized m-sphere S , we have

β(S)β̂(S)− |ξ(S)|2 = −1.

Proof sketch:

If S is a hyperplane, then statement is true.

If S is an m-sphere, solve for β̂(S) in terms of β(S) and ξ(S).
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Möbius Transformations and Inversive Coordinates on C

Theorem (Stange, 2017)

Let

g =

(
a b
c d

)
∈ SL(2,C).

Then S = g(R̂) has the following inversive coordinates:

bend β(S) = i(cd̄ − dc̄)

co-bend β̂(S) = i(ab̄ − bā)

bend-center ξ(S) = i(ad̄ − bc̄)
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Möbius Transformations and Inversive Coordinates on C
Example

Example

g =

(
2 + i 1− i
i 1

)
∈ SL(2,C).

R2

S

Then g(R̂) has the following inversive coordinates:

β(S) = i(i 1̄− 1ī) = −2

β̂(S) = i((2 + i)(1− i)− (1− i)(2 + i)) = −6

ξ(S) = i((2 + i)1̄− (1− i)ī) = −2 + 3i
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Möbius Transformations and Inversive Coordinates on C

What about g(C ) for an arbitrary generalized circle C?

What about spheres in higher dimensions?
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Clifford Algebras

Definition

The Clifford algebra Cm is the real associative algebra generated by
m elements i1, i2, . . . , im subject to the relations:

i2` = −1 (1 ≤ ` ≤ m)

ihi` = −i`ih (1 ≤ h, ` ≤ m, h 6= `)

Examples (Some Elements in Cm)

1 + i1 + i1i2 ∈ C2

2 + i1i2i3 ∈ C3
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Clifford Algebras

Every a ∈ Cm can be expressed uniquely in the form

a =
∑
I

aI I ,

where the sum ranges over all products I = iν1 iν2 · · · iνk ,
1 ≤ ν1 < ν2 < · · · < νk ≤ m, aI ∈ R, and empty product
allowed

norm |a|2 =
∑

I a
2
I

Cm is a vector space of dimension 2m over R

Examples (Cm for some m)

C0 = R
C1
∼= C, z0 + z1i1 ↔ z0 + z1i

C2
∼= H, z0 + z1i1 + z2i2 + z12i1i2 ↔ z0 + z1i + z2j + z12k

C3
∼= H⊕H
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Edna Jones Möbius Transformations, Bends, and Centers



Clifford Algebras

Every a ∈ Cm can be expressed uniquely in the form

a =
∑
I

aI I ,

where the sum ranges over all products I = iν1 iν2 · · · iνk ,
1 ≤ ν1 < ν2 < · · · < νk ≤ m, aI ∈ R, and empty product
allowed

norm |a|2 =
∑

I a
2
I

Cm is a vector space of dimension 2m over R

Examples (Cm for some m)

C0 = R

C1
∼= C, z0 + z1i1 ↔ z0 + z1i

C2
∼= H, z0 + z1i1 + z2i2 + z12i1i2 ↔ z0 + z1i + z2j + z12k

C3
∼= H⊕H
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Involutions on Clifford Algebras

1 ∗ : each iν1 iν2 · · · iνk 7→ iνk · · · iν2 iν1
anti-automorphism: (a + b)∗ = a∗ + b∗ and (ab)∗ = b∗a∗

2 ′: each i` 7→ −i`
automorphism: (a + b)′ = a′ + b′ and (ab)′ = a′b′

3 ¯: a 7→ ā = (a′)∗ = (a∗)′

anti-automorphism: (a + b) = ā + b̄ and ab = b̄ā

Example

a = 1 + 2i1 + 3i1i2

a∗ = 1 + 2i1 + 3i2i1 = 1 + 2i1 − 3i1i2

a′ = 1− 2i1 + 3(−i1)(−i2) = 1− 2i1 + 3i1i2

ā = 1− 2i1 − 3i1i2

|a|2 = 12 + 22 + 32 = 14 = aā = āa

Edna Jones Möbius Transformations, Bends, and Centers
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Clifford Vectors

Vm := {v0 + v1i1 + · · ·+ vmim} ∼= Rm+1

v0 + v1i1 + · · ·+ vmim ↔ (v0, v1, . . . , vm)

V̂m := Vm ∪ {∞} ∼= Rm+1 ∪ {∞} = R̂m+1

Some properties of Clifford vector v ∈ Vm:

v∗ = v

v̄ = v ′

|v |2 = v v̄ = v̄ v

Edna Jones Möbius Transformations, Bends, and Centers



Clifford Vectors

Vm := {v0 + v1i1 + · · ·+ vmim} ∼= Rm+1

v0 + v1i1 + · · ·+ vmim ↔ (v0, v1, . . . , vm)

V̂m := Vm ∪ {∞} ∼= Rm+1 ∪ {∞} = R̂m+1

Some properties of Clifford vector v ∈ Vm:

v∗ = v

v̄ = v ′

|v |2 = v v̄ = v̄ v
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Clifford Group

|v |2 = v v̄ = v̄ v

=⇒ nonzero vectors are invertible with v−1 = v̄/|v |2

=⇒ Clifford group Γm := {products of nonzero vectors} is a
multiplicative group

Some properties of the Clifford group Γm, a, b ∈ Γm:

|a|2 = aā = āa

a−1 = ā/|a|2

|ab| = |a||b|

Edna Jones Möbius Transformations, Bends, and Centers



Clifford Group

|v |2 = v v̄ = v̄ v

=⇒ nonzero vectors are invertible with v−1 = v̄/|v |2

=⇒ Clifford group Γm := {products of nonzero vectors} is a
multiplicative group

Some properties of the Clifford group Γm, a, b ∈ Γm:

|a|2 = aā = āa
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Clifford Matrices

Definition

For g =

(
a b
c d

)
with a, b, c , d ∈ Cm, define the

pseudo-determinant ∆(g) as

∆(g) = ad∗ − bc∗.

GL(2,Cm) :=

{
g =

(
a b
c d

)
: a, b, c , d ∈ Γm ∪ {0},

ab∗, cd∗, c∗a, d∗b ∈ Vm,∆(g) ∈ R \ {0}}

For g , h ∈ GL(2,Cm), ∆(gh) = ∆(g)∆(h).
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Clifford Matrices and Möbius Transformations

GL(2,Cm) : V̂m → V̂m

z 7→ g(z) = (az + b)(cz + d)−1,

g =

(
a b
c d

)
∈ GL(2,Cm)

Also act on V̂m:

SL(2,Cm) := {g ∈ GL(2,Cm) : ∆(g) = 1}

PSL(2,Cm) := SL(2,Cm)/

{
±
(

1 0
0 1

)}
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Clifford Matrices and Möbius Transformations

Theorem (Ahlfors, 1985)

The group PSL(2,Cm) is isomorphic to the group of

orientation-preserving Möbius transformations on R̂m+1. The
group PSL(2,Cm) is generated by the matrices(

a 0
0 (a∗)−1

)
,

(
1 b
0 1

)
,

(
0 1
−1 0

)
,

with a ∈ Γm and b ∈ Vm.

Corollary

The group SL(2,Cm) is generated by the matrices(
a 0
0 (a∗)−1

)
,

(
1 b
0 1

)
,

(
0 1
−1 0

)
,

with a ∈ Γm and b ∈ Vm.

Edna Jones Möbius Transformations, Bends, and Centers



Clifford Matrices and Möbius Transformations
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Clifford Matrices and Möbius Transformations

(
a 0
0 (a∗)−1

)
: z 7→ aza∗

corresponds to a rotation associated to a followed by a dilation by
|a|2.

S

( a
|a| 0

0 |a|(a∗)−1

)
(S)

(
a 0
0 (a∗)−1

)
(S)
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Clifford Matrices and Möbius Transformations

(
1 b
0 1

)
: z 7→ z + b

corresponds to a translation by b.

S

b
(

1 b
0 1

)
(S)
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Clifford Matrices and Möbius Transformations

(
0 1
−1 0

)
: z 7→ −z−1.

corresponds to a reflection in the unit m-sphere followed by a
reflection in the hyperplane z0 = 0.

S
Ŝ

(
0 1
−1 0

)
(S)
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Clifford Matrices and Möbius Transformations

(
0 1
−1 0

)
: z 7→ −z−1.

corresponds to a reflection in the unit m-sphere followed by a
reflection in the hyperplane z0 = 0.

S
Ŝ(

0 1
−1 0

)
(S)
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Inversive-Coordinate Matrix

Definition

Given an oriented generalized m-sphere S , the inversive-coordinate
matrix of S is the 2× 2 matrix

MS :=

(
β̂(S) ξ(S)

ξ(S) β(S)

)
.

(MS)> = MS

∆(MS) = β̂(S)(β(S))∗ − ξ(S)(ξ(S))∗ = −1 since

β(S)β̂(S)− |ξ(S)|2 = −1
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Inversive Coordinates Example 1

R2

S

β(S) = 1
2

β̂(S) = 6

ξ(S) = 1
2(4, 0) = (2, 0)
∼ 2 + 0i = 2

MS =

(
6 2
2 1

2

)
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Inversive Coordinates Example 2

R2

S

β(S) = 0

β̂(S) = 2

ξ(S) = (0, 1) ∼ 0 + i = i

MS =

(
2 i
−i 0

)
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Möbius Transformations and Inversive-Coordinate Matrix

Theorem (J., 2020)

The group SL(2,Cm) acts on the set of inversive-coordinate
matrices by

g .M := gMg>

for an inversive-coordinate matrix M and g ∈ SL(2,Cm). The
group action of SL(2,Cm) on the set of inversive-coordinate
matrices is equivalent to the group action of SL(2,Cm) on the set
of oriented generalized m-spheres. That is, if S is an oriented
generalized m-sphere and g ∈ SL(2,Cm), then

Mg(S) = g .MS .

Extends works that Sheydvasser did for m = 2 in 2019.
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Proof Outline

1 Check that g .M = gMg> is a group action of SL(2,Cm) on
the set of inversive-coordinate matrices.

(
1 0
0 1

)
.M = M

(gh).M = (gh)M(gh)
>

= g(hMh
>

)g> = g .(h.M) for
g , h ∈ SL(2,Cm)

2 Verify that Mg(S) = g .MS for any oriented generalized
m-sphere S and for any generator g of SL(2,Cm).
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Proof Outline for Translation z 7→ z + b

g =

(
1 b
0 1

)
for some fixed b ∈ Vm and MS0 =

(
β̂ ξ

ξ β

)
.

g : z 7→ z + b

S0

v

b

g(S0)

v + b

=⇒ β 7→ β and ξ 7→ ξ + βb.

If β 6= 0, we can apply β(S)β̂(S)− |ξ(S)|2 = −1 and see that
β̂ 7→ β̂ + bξ + ξb + β|b|2.

If β = 0, we can use the fact that β̂(S)
2 ξ(S) is the closest point on a

hyperplane S to the origin and see that β̂ 7→ β̂ + bξ + ξb + β|b|2.
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Proof Outline for Translation z 7→ z + b

g =

(
1 b
0 1

)
for some fixed b ∈ Vm.

g : z 7→ z + b
=⇒ β 7→ β, ξ 7→ ξ + βb, ξ 7→ ξ + βb,
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Möbius Transformations and Inversive Coordinates on Cm

Corollary (J., 2020)

Let

g =

(
a b
c d

)
∈ SL(2,Cm),

and let S0 be an oriented generalized m-sphere with an
inversive-coordinate matrix

MS0 =

(
β̂ ξ

ξ β

)
.

Then g(S0) has the following inversive coordinates:

bend β(g(S0)) = β̂|c |2 + dξc + cξd + β|d |2

co-bend β̂(g(S0)) = β̂|a|2 + bξa + aξb + β|b|2

bend-center ξ(g(S0)) = aβ̂c + bξc + aξd + bβd
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Möbius Transformations and Inversive Coordinates on Cm

Define V̂m−1 be the oriented hyperplane with the
inversive-coordinate matrix

M
V̂m−1

=

(
0 im
−im 0

)
.

Corollary (J., 2020)

Let g =

(
a b
c d

)
∈ SL(2,Cm).

Then S = g(V̂m−1) has the following inversive coordinates:

bend β(S) = cimd̄ − dimc̄

co-bend β̂(S) = aimb̄ − bimā

bend-center ξ(S) = aimd̄ − bimc̄

m = 1 is Stange’s result.

m = 2 done by Sheydvasser.
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Thank you for listening!
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