Möbius Transformations and the Bends and Centers of Generalized Circles, Spheres, and Hyperspheres

### Edna Jones

Rutgers, The State University of New Jersey

Graduate Algebra and Representation Theory Seminar (GARTS) Rutgers, The State University of New Jersey November 11, 2020

## Möbius Transformations on $\ensuremath{\mathbb{C}}$



## Möbius Transformations on $\mathbb C$

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{C})$$



포 🛌 포

## Möbius Transformations on ${\mathbb C}$

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{C})$$



æ

### Definition (Generalized *m*-sphere)

A generalized *m*-sphere is an *m*-sphere or a hyperplane in  $\mathbb{R}^{m+1}$ .

#### Examples

A generalized 1-sphere is a circle (1-sphere) or a line in  $\mathbb{R}^2$ . A generalized 2-sphere is a sphere (2-sphere) or a plane in  $\mathbb{R}^3$ .

伺下 イヨト イヨト

### Definition (Generalized *m*-sphere)

A generalized *m*-sphere is an *m*-sphere or a hyperplane in  $\mathbb{R}^{m+1}$ .

#### Examples

A generalized 1-sphere is a circle (1-sphere) or a line in  $\mathbb{R}^2$ . A generalized 2-sphere is a sphere (2-sphere) or a plane in  $\mathbb{R}^3$ .

### Definition (Positively oriented)

An oriented *m*-sphere *S* is *positively oriented*  $\iff$  the interior of *S* contains the center of *S*.

周 ト イ ヨ ト イ ヨ ト

## Inversive Coordinates

### Definition

Given an oriented generalized m-sphere S, we define the following:

If S is not a hyperplane, then the bend β(S) of S is 1/(radius of S), taken to be positive if S is positively oriented and negative otherwise.

If S is a hyperplane, then its bend is  $\beta(S) = 0$ .

周 ト イ ヨ ト イ ヨ ト

Given an oriented generalized m-sphere S, we define the following:

If S is not a hyperplane, then the bend β(S) of S is 1/(radius of S), taken to be positive if S is positively oriented and negative otherwise.

If S is a hyperplane, then its bend is  $\beta(S) = 0$ .

 The *co-bend* β̂(S) of S is the bend of the reflection of S in the unit *m*-sphere.

Given an oriented generalized m-sphere S, we define the following:

If S is not a hyperplane, then the bend β(S) of S is 1/(radius of S), taken to be positive if S is positively oriented and negative otherwise.

If S is a hyperplane, then its bend is  $\beta(S) = 0$ .

- The *co-bend* β̂(S) of S is the bend of the reflection of S in the unit *m*-sphere.
- If S is not a hyperplane, then the *bend-center* ξ(S) ∈ ℝ<sup>m+1</sup> of S is the product of the bend β(S) and the center of S.
  If S is a hyperplane, its bend-center is the unique unit normal vector to S pointing in the direction of the interior of S.

< ロ > < 同 > < 三 > < 三 >

Given an oriented generalized m-sphere S, we define the following:

If S is not a hyperplane, then the bend β(S) of S is 1/(radius of S), taken to be positive if S is positively oriented and negative otherwise.

If S is a hyperplane, then its bend is  $\beta(S) = 0$ .

- The co-bend β̂(S) of S is the bend of the reflection of S in the unit m-sphere.
- If S is not a hyperplane, then the *bend-center* ξ(S) ∈ ℝ<sup>m+1</sup> of S is the product of the bend β(S) and the center of S.
  If S is a hyperplane, its bend-center is the unique unit normal vector to S pointing in the direction of the interior of S.
- The *inversive coordinates* of S is the ordered triple (β(S), β̂(S), ξ(S)).

< ロ > < 同 > < 三 > < 三 >



★ 注 ▶ ★ 注 ▶ ...

æ



• 
$$\beta(S) = \frac{1}{2}$$

< 注 → < 注 → …

æ



ト \* 注 \* \* 注 \* 二

æ



• • = • • = •

э



æ



• 
$$\beta(S) = 0$$

æ



• 
$$\beta(S) = 0$$
  
•  $\hat{\beta}(S) = 2$ 

æ



æ

## Inversive Coordinates Uniquely Describe an Oriented Generalized *m*-Sphere

For an oriented m-sphere S,

- the radius of S is  $|1/\beta(S)|$
- the center of S is  $\xi(S)/\beta(S)$
- the orientation of S is indicated by the sign of  $\beta(S)$

## Inversive Coordinates Uniquely Describe an Oriented Generalized *m*-Sphere

For an oriented hyperplane S,

 ξ(S) is the unit normal vector to S pointing in the direction of the interior of S.



## Inversive Coordinates Uniquely Describe an Oriented Generalized *m*-Sphere

For an oriented hyperplane S,

- ξ(S) is the unit normal vector to S pointing in the direction of the interior of S.
- $\frac{\hat{\beta}(S)}{2}\xi(S)$  is the closest point on S to the origin



### Theorem

For an oriented generalized m-sphere S, we have

$$\beta(S)\hat{\beta}(S) - |\xi(S)|^2 = -1.$$

Image: Image:

### Theorem

For an oriented generalized m-sphere S, we have

$$\beta(S)\hat{\beta}(S) - |\xi(S)|^2 = -1.$$

Proof sketch:

• If S is a hyperplane, then statement is true.

#### Theorem

For an oriented generalized m-sphere S, we have

$$\beta(S)\hat{\beta}(S) - |\xi(S)|^2 = -1.$$

Proof sketch:

- If S is a hyperplane, then statement is true.
- If S is an *m*-sphere, solve for  $\hat{\beta}(S)$  in terms of  $\beta(S)$  and  $\xi(S)$ .

### Theorem (Stange, 2017)

Let

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{SL}(2,\mathbb{C}).$$

Then  $S = g(\widehat{\mathbb{R}})$  has the following inversive coordinates:

• bend  $\beta(S) = i(c\bar{d} - d\bar{c})$ 

• co-bend 
$$\hat{\beta}(S) = i(a\bar{b} - b\bar{a})$$

• bend-center  $\xi(S) = i(a\bar{d} - b\bar{c})$ 

# Möbius Transformations and Inversive Coordinates on $\ensuremath{\mathbb{C}}$ Example

## Example ₽2 $g = \begin{pmatrix} 2+i & 1-i \\ i & 1 \end{pmatrix} \in SL(2, \mathbb{C}).$ Then $g(\widehat{\mathbb{R}})$ has the following inversive coordinates: • $\beta(S) = i(i\bar{1} - 1\bar{i}) = -2$ • $\hat{\beta}(S) = i((2+i)\overline{(1-i)} - (1-i)\overline{(2+i)}) = -6$ • $\xi(S) = i((2+i)\overline{1} - (1-i)\overline{i}) = -2 + 3i$

- ( 同 ) - ( 目 ) - ( 目 )

## Möbius Transformations and Inversive Coordinates on $\ensuremath{\mathbb{C}}$

• What about g(C) for an arbitrary generalized circle C?

- What about g(C) for an arbitrary generalized circle C?
- What about spheres in higher dimensions?

The *Clifford algebra*  $C_m$  is the real associative algebra generated by m elements  $i_1, i_2, \ldots, i_m$  subject to the relations:

• 
$$i_{\ell}^2 = -1 \ (1 \le \ell \le m)$$

• 
$$i_h i_\ell = -i_\ell i_h \ (1 \le h, \ell \le m, \ h \ne \ell)$$

• • = • • = •

The *Clifford algebra*  $C_m$  is the real associative algebra generated by m elements  $i_1, i_2, \ldots, i_m$  subject to the relations:

• 
$$i_\ell^2 = -1 \; (1 \leq \ell \leq m)$$

• 
$$i_h i_\ell = -i_\ell i_h \ (1 \le h, \ell \le m, \ h \ne \ell)$$

### Examples (Some Elements in $C_m$ )

- $1 + i_1 + i_1 i_2 \in C_2$
- $2+i_1i_2i_3 \in C_3$

伺 ト イヨ ト イヨト

• Every  $a \in C_m$  can be expressed uniquely in the form

$$a = \sum_{I} a_{I}I,$$

where the sum ranges over all products  $I = i_{\nu_1}i_{\nu_2}\cdots i_{\nu_k}$ ,  $1 \leq \nu_1 < \nu_2 < \cdots < \nu_k \leq m$ ,  $a_I \in \mathbb{R}$ , and empty product allowed

• • • • • • • •

э

• Every  $a \in C_m$  can be expressed uniquely in the form

$$a = \sum_{I} a_{I}I,$$

where the sum ranges over all products  $I = i_{\nu_1}i_{\nu_2}\cdots i_{\nu_k}$ ,  $1 \leq \nu_1 < \nu_2 < \cdots < \nu_k \leq m$ ,  $a_I \in \mathbb{R}$ , and empty product allowed

• norm  $|a|^2 = \sum_I a_I^2$ 

• • • • • • • •

э

• Every  $a \in C_m$  can be expressed uniquely in the form

$$a = \sum_{I} a_{I}I,$$

where the sum ranges over all products  $I = i_{\nu_1} i_{\nu_2} \cdots i_{\nu_k}$ ,  $1 \leq \nu_1 < \nu_2 < \cdots < \nu_k \leq m$ ,  $a_I \in \mathbb{R}$ , and empty product allowed

- norm  $|a|^2 = \sum_I a_I^2$
- $C_m$  is a vector space of dimension  $2^m$  over  $\mathbb{R}$

• • = • • = •

• Every  $a \in C_m$  can be expressed uniquely in the form

$$a = \sum_{I} a_{I}I,$$

where the sum ranges over all products  $I = i_{\nu_1} i_{\nu_2} \cdots i_{\nu_k}$ ,  $1 \leq \nu_1 < \nu_2 < \cdots < \nu_k \leq m$ ,  $a_I \in \mathbb{R}$ , and empty product allowed

- norm  $|a|^2 = \sum_I a_I^2$
- $C_m$  is a vector space of dimension  $2^m$  over  $\mathbb{R}$

• • = • • = •

• Every  $a \in C_m$  can be expressed uniquely in the form

$$a = \sum_{I} a_{I}I,$$

where the sum ranges over all products  $I = i_{\nu_1} i_{\nu_2} \cdots i_{\nu_k}$ ,  $1 \leq \nu_1 < \nu_2 < \cdots < \nu_k \leq m$ ,  $a_I \in \mathbb{R}$ , and empty product allowed

- norm  $|a|^2 = \sum_I a_I^2$
- $C_m$  is a vector space of dimension  $2^m$  over  $\mathbb{R}$

#### Examples ( $C_m$ for some m)

•  $C_0 = \mathbb{R}$ 

• Every  $a \in C_m$  can be expressed uniquely in the form

$$a = \sum_{I} a_{I}I,$$

where the sum ranges over all products  $I = i_{\nu_1} i_{\nu_2} \cdots i_{\nu_k}$ ,  $1 \leq \nu_1 < \nu_2 < \cdots < \nu_k \leq m$ ,  $a_I \in \mathbb{R}$ , and empty product allowed

• norm 
$$|a|^2 = \sum_I a_I^2$$

•  $C_m$  is a vector space of dimension  $2^m$  over  $\mathbb{R}$ 

### Examples ( $C_m$ for some m)

• 
$$C_0 = \mathbb{R}$$

• 
$$C_1 \cong \mathbb{C}, \ z_0 + z_1 i_1 \leftrightarrow z_0 + z_1 i$$
# **Clifford Algebras**

• Every  $a \in C_m$  can be expressed uniquely in the form

$$a = \sum_{I} a_{I}I,$$

where the sum ranges over all products  $I = i_{\nu_1}i_{\nu_2}\cdots i_{\nu_k}$ ,  $1 \leq \nu_1 < \nu_2 < \cdots < \nu_k \leq m$ ,  $a_I \in \mathbb{R}$ , and empty product allowed

• norm 
$$|a|^2 = \sum_I a_I^2$$

•  $C_m$  is a vector space of dimension  $2^m$  over  $\mathbb{R}$ 

#### Examples ( $C_m$ for some m)

• 
$$C_0 = \mathbb{R}$$

• 
$$C_1 \cong \mathbb{C}$$
,  $z_0 + z_1 i_1 \leftrightarrow z_0 + z_1 i$ 

•  $C_2 \cong \mathbb{H}, \ z_0 + z_1 i_1 + z_2 i_2 + z_{12} i_1 i_2 \leftrightarrow z_0 + z_1 i + z_2 j + z_{12} k$ 

# **Clifford Algebras**

• Every  $a \in C_m$  can be expressed uniquely in the form

$$a = \sum_{I} a_{I}I,$$

where the sum ranges over all products  $I = i_{\nu_1}i_{\nu_2}\cdots i_{\nu_k}$ ,  $1 \leq \nu_1 < \nu_2 < \cdots < \nu_k \leq m$ ,  $a_I \in \mathbb{R}$ , and empty product allowed

• norm 
$$|a|^2 = \sum_I a_I^2$$

•  $C_m$  is a vector space of dimension  $2^m$  over  $\mathbb{R}$ 

#### Examples ( $C_m$ for some m)

• 
$$C_0 = \mathbb{R}$$

• 
$$C_1 \cong \mathbb{C}$$
,  $z_0 + z_1 i_1 \leftrightarrow z_0 + z_1 i$ 

- $C_2 \cong \mathbb{H}, \ z_0 + z_1 i_1 + z_2 i_2 + z_{12} i_1 i_2 \leftrightarrow z_0 + z_1 i + z_2 j + z_{12} k$
- $C_3 \cong \mathbb{H} \oplus \mathbb{H}$

• \* : each  $i_{\nu_1}i_{\nu_2}\cdots i_{\nu_k} \mapsto i_{\nu_k}\cdots i_{\nu_2}i_{\nu_1}$ anti-automorphism:  $(a+b)^* = a^* + b^*$  and  $(ab)^* = b^*a^*$ 

. . . . . . . . . .

- \* : each  $i_{\nu_1}i_{\nu_2}\cdots i_{\nu_k} \mapsto i_{\nu_k}\cdots i_{\nu_2}i_{\nu_1}$ anti-automorphism:  $(a+b)^* = a^* + b^*$  and  $(ab)^* = b^*a^*$
- 2 ': each  $i_{\ell} \mapsto -i_{\ell}$ automorphism: (a + b)' = a' + b' and (ab)' = a'b'

向下 イヨト イヨト ニヨ

- \* : each  $i_{\nu_1}i_{\nu_2}\cdots i_{\nu_k} \mapsto i_{\nu_k}\cdots i_{\nu_2}i_{\nu_1}$ anti-automorphism:  $(a+b)^* = a^* + b^*$  and  $(ab)^* = b^*a^*$
- ② ': each  $i_{\ell} \mapsto -i_{\ell}$ automorphism: (a + b)' = a' + b' and (ab)' = a'b'
- :  $a \mapsto \bar{a} = (a')^* = (\underline{a^*})'$ anti-automorphism:  $(a+b) = \bar{a} + \bar{b}$  and  $\overline{ab} = \bar{b}\bar{a}$

. . . . . . . . . .

- \* : each  $i_{\nu_1}i_{\nu_2}\cdots i_{\nu_k} \mapsto i_{\nu_k}\cdots i_{\nu_2}i_{\nu_1}$ anti-automorphism:  $(a+b)^* = a^* + b^*$  and  $(ab)^* = b^*a^*$
- ② ': each  $i_{\ell} \mapsto -i_{\ell}$ automorphism: (a + b)' = a' + b' and (ab)' = a'b'
- :  $a \mapsto \bar{a} = (a')^* = (\underline{a}^*)'$ anti-automorphism:  $(a+b) = \bar{a} + \bar{b}$  and  $\overline{ab} = \bar{b}\bar{a}$

#### Example

 $a = 1 + 2i_1 + 3i_1i_2$ 

- \* : each  $i_{\nu_1}i_{\nu_2}\cdots i_{\nu_k} \mapsto i_{\nu_k}\cdots i_{\nu_2}i_{\nu_1}$ anti-automorphism:  $(a+b)^* = a^* + b^*$  and  $(ab)^* = b^*a^*$
- ② ': each  $i_{\ell} \mapsto -i_{\ell}$ automorphism: (a + b)' = a' + b' and (ab)' = a'b'

### Example

 $a = 1 + 2i_1 + 3i_1i_2$ 

• 
$$a^* = 1 + 2i_1 + 3i_2i_1 = 1 + 2i_1 - 3i_1i_2$$

伺 ト イヨト イヨト

- \* : each  $i_{\nu_1}i_{\nu_2}\cdots i_{\nu_k} \mapsto i_{\nu_k}\cdots i_{\nu_2}i_{\nu_1}$ anti-automorphism:  $(a+b)^* = a^* + b^*$  and  $(ab)^* = b^*a^*$
- ② ': each  $i_{\ell} \mapsto -i_{\ell}$ automorphism: (a + b)' = a' + b' and (ab)' = a'b'

• : 
$$a \mapsto \bar{a} = (a')^* = (\underline{a}^*)'$$
  
anti-automorphism:  $(a+b) = \bar{a} + \bar{b}$  and  $\overline{ab} = \bar{b}\bar{a}$ 

#### Example

 $a = 1 + 2i_1 + 3i_1i_2$ 

• 
$$a^* = 1 + 2i_1 + 3i_2i_1 = 1 + 2i_1 - 3i_1i_2$$

•  $a' = 1 - 2i_1 + 3(-i_1)(-i_2) = 1 - 2i_1 + 3i_1i_2$ 

伺 ト イヨト イヨト

- \* : each  $i_{\nu_1}i_{\nu_2}\cdots i_{\nu_k} \mapsto i_{\nu_k}\cdots i_{\nu_2}i_{\nu_1}$ anti-automorphism:  $(a+b)^* = a^* + b^*$  and  $(ab)^* = b^*a^*$
- ② ': each  $i_{\ell} \mapsto -i_{\ell}$ automorphism: (a + b)' = a' + b' and (ab)' = a'b'

• : 
$$a \mapsto \bar{a} = (a')^* = (\underline{a}^*)'$$
  
anti-automorphism:  $(a+b) = \bar{a} + \bar{b}$  and  $\overline{ab} = \bar{b}\bar{a}$ 

### Example

 $a = 1 + 2i_1 + 3i_1i_2$ 

• 
$$a^* = 1 + 2i_1 + 3i_2i_1 = 1 + 2i_1 - 3i_1i_2$$

• 
$$a' = 1 - 2i_1 + 3(-i_1)(-i_2) = 1 - 2i_1 + 3i_1i_2$$

• 
$$\bar{a} = 1 - 2i_1 - 3i_1i_2$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- \* : each  $i_{\nu_1}i_{\nu_2}\cdots i_{\nu_k} \mapsto i_{\nu_k}\cdots i_{\nu_2}i_{\nu_1}$ anti-automorphism:  $(a+b)^* = a^* + b^*$  and  $(ab)^* = b^*a^*$
- ② ': each  $i_{\ell} \mapsto -i_{\ell}$ automorphism: (a + b)' = a' + b' and (ab)' = a'b'

• : 
$$a \mapsto \bar{a} = (a')^* = (\underline{a}^*)'$$
  
anti-automorphism:  $(a+b) = \bar{a} + \bar{b}$  and  $\overline{ab} = \bar{b}\bar{a}$ 

### Example

 $a = 1 + 2i_1 + 3i_1i_2$ 

• 
$$a^* = 1 + 2i_1 + 3i_2i_1 = 1 + 2i_1 - 3i_1i_2$$

• 
$$a' = 1 - 2i_1 + 3(-i_1)(-i_2) = 1 - 2i_1 + 3i_1i_2$$

• 
$$\bar{a} = 1 - 2i_1 - 3i_1i_2$$

• 
$$|a|^2 = 1^2 + 2^2 + 3^2 = 14 = a\bar{a} = \bar{a}a$$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$V_m := \{v_0 + v_1 i_1 + \dots + v_m i_m\} \cong \mathbb{R}^{m+1}$$
$$v_0 + v_1 i_1 + \dots + v_m i_m \leftrightarrow (v_0, v_1, \dots, v_m)$$

(\*) \* 문 \* \* 문 \*

$$V_m := \{v_0 + v_1 i_1 + \dots + v_m i_m\} \cong \mathbb{R}^{m+1}$$
$$v_0 + v_1 i_1 + \dots + v_m i_m \leftrightarrow (v_0, v_1, \dots, v_m)$$

$$\widehat{V_m} := V_m \cup \{\infty\} \cong \mathbb{R}^{m+1} \cup \{\infty\} = \widehat{\mathbb{R}^{m+1}}$$

(\*) \* 문 \* \* 문 \*

$$V_m := \{v_0 + v_1 i_1 + \dots + v_m i_m\} \cong \mathbb{R}^{m+1}$$
$$v_0 + v_1 i_1 + \dots + v_m i_m \leftrightarrow (v_0, v_1, \dots, v_m)$$

$$\widehat{V_m} := V_m \cup \{\infty\} \cong \mathbb{R}^{m+1} \cup \{\infty\} = \widehat{\mathbb{R}^{m+1}}$$

Some properties of Clifford vector  $v \in V_m$ :

• 
$$v^* = v$$

$$V_m := \{v_0 + v_1 i_1 + \dots + v_m i_m\} \cong \mathbb{R}^{m+1}$$
$$v_0 + v_1 i_1 + \dots + v_m i_m \leftrightarrow (v_0, v_1, \dots, v_m)$$

$$\widehat{V_m} := V_m \cup \{\infty\} \cong \mathbb{R}^{m+1} \cup \{\infty\} = \widehat{\mathbb{R}^{m+1}}$$

Some properties of Clifford vector  $v \in V_m$ :

- $v^* = v$
- $\bar{v} = v'$

・ 戸 ト ・ ヨ ト ・ ヨ ト

$$V_m := \{v_0 + v_1 i_1 + \dots + v_m i_m\} \cong \mathbb{R}^{m+1}$$
$$v_0 + v_1 i_1 + \dots + v_m i_m \leftrightarrow (v_0, v_1, \dots, v_m)$$

$$\widehat{V_m} := V_m \cup \{\infty\} \cong \mathbb{R}^{m+1} \cup \{\infty\} = \widehat{\mathbb{R}^{m+1}}$$

Some properties of Clifford vector  $v \in V_m$ :

• 
$$v^* = v$$

• 
$$\bar{v} = v'$$

• 
$$|v|^2 = v\bar{v} = \bar{v}v$$

日本・モン・モン

$$|v|^2 = v\bar{v} = \bar{v}v$$

回 とくほとくほとう

$$|v|^2 = v\bar{v} = \bar{v}v$$

 $\implies \text{Clifford group } \Gamma_m := \{ \text{products of nonzero vectors} \} \text{ is a multiplicative group}$ 

• • = • • = •

$$|v|^2 = v\bar{v} = \bar{v}v$$

 $\implies$  Clifford group  $\Gamma_m:=\{\text{products of nonzero vectors}\}$  is a multiplicative group

Some properties of the Clifford group  $\Gamma_m$ ,  $a, b \in \Gamma_m$ :

• 
$$|a|^2 = a\overline{a} = \overline{a}a$$

• • = • • = •

$$|v|^2 = v\bar{v} = \bar{v}v$$

 $\implies$  Clifford group  $\Gamma_m:=\{\text{products of nonzero vectors}\}$  is a multiplicative group

Some properties of the Clifford group  $\Gamma_m$ ,  $a, b \in \Gamma_m$ :

• 
$$|a|^2 = a\bar{a} = \bar{a}a$$
  
•  $a^{-1} = \bar{a}/|a|^2$ 

• • = • • = •

$$|v|^2 = v\bar{v} = \bar{v}v$$

 $\implies$  Clifford group  $\Gamma_m:=\{\text{products of nonzero vectors}\}$  is a multiplicative group

Some properties of the Clifford group  $\Gamma_m$ ,  $a, b \in \Gamma_m$ :

• 
$$|a|^2 = a\overline{a} = \overline{a}a$$

• 
$$a^{-1} = \bar{a}/|a|^2$$

• 
$$|ab| = |a||b|$$

• • = • • = •

For 
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 with  $a, b, c, d \in C_m$ , define the *pseudo-determinant*  $\Delta(g)$  as

$$\Delta(g) = ad^* - bc^*.$$

御 と く ヨ と く ヨ と

For 
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 with  $a, b, c, d \in C_m$ , define the pseudo-determinant  $\Delta(g)$  as

$$\Delta(g) = ad^* - bc^*.$$

$$\mathsf{GL}(2,C_m) := egin{cases} g = egin{pmatrix} a & b \ c & d \end{pmatrix} : a,b,c,d \in \Gamma_m \cup \{0\}, \ ab^*,cd^*,c^*a,d^*b \in V_m,\Delta(g) \in \mathbb{R} \setminus \{0\} \} \end{cases}$$

▲御▶ ▲ 臣▶ ▲ 臣▶

For 
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 with  $a, b, c, d \in C_m$ , define the pseudo-determinant  $\Delta(g)$  as

$$\Delta(g) = ad^* - bc^*.$$

$$\mathsf{GL}(2,C_m) := egin{cases} g = egin{pmatrix} a & b \ c & d \end{pmatrix} : a,b,c,d \in \Gamma_m \cup \{0\}, \ ab^*,cd^*,c^*a,d^*b \in V_m,\Delta(g) \in \mathbb{R} \setminus \{0\}\} \end{cases}$$

For  $g, h \in GL(2, C_m)$ ,  $\Delta(gh) = \Delta(g)\Delta(h)$ .

æ

. . . . . . . . . .

$$\begin{aligned} \mathsf{GL}(2, C_m) : \widehat{V_m} &\to \widehat{V_m} \\ z &\mapsto g(z) = (az+b)(cz+d)^{-1}, \\ g &= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{GL}(2, C_m) \end{aligned}$$

< ∃ →

$$\begin{aligned} \mathsf{GL}(2,C_m) &: \widehat{V_m} \to \widehat{V_m} \\ z &\mapsto g(z) = (az+b)(cz+d)^{-1}, \\ g &= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{GL}(2,C_m) \end{aligned}$$

Also act on  $\widehat{V_m}$ :

$$SL(2, C_m) := \{g \in GL(2, C_m) : \Delta(g) = 1\}$$
$$PSL(2, C_m) := SL(2, C_m) / \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

< ∃ →

### Theorem (Ahlfors, 1985)

The group  $PSL(2, C_m)$  is isomorphic to the group of orientation-preserving Möbius transformations on  $\widehat{\mathbb{R}^{m+1}}$ . The group  $PSL(2, C_m)$  is generated by the matrices

$$\begin{pmatrix} a & 0 \\ 0 & (a^*)^{-1} \end{pmatrix}, \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

with  $a \in \Gamma_m$  and  $b \in V_m$ .

### Theorem (Ahlfors, 1985)

The group  $PSL(2, C_m)$  is isomorphic to the group of orientation-preserving Möbius transformations on  $\widehat{\mathbb{R}^{m+1}}$ . The group  $PSL(2, C_m)$  is generated by the matrices

$$\begin{pmatrix} a & 0 \\ 0 & (a^*)^{-1} \end{pmatrix}, \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

with  $a \in \Gamma_m$  and  $b \in V_m$ .

### Corollary

The group  $SL(2, C_m)$  is generated by the matrices

$$\begin{pmatrix} a & 0 \\ 0 & (a^*)^{-1} \end{pmatrix}, \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

with  $a \in \Gamma_m$  and  $b \in V_m$ .

 $\begin{pmatrix} a & 0 \\ 0 & (a^*)^{-1} \end{pmatrix} : z \mapsto aza^*$  corresponds to a rotation associated to *a* followed by a dilation by  $|a|^2$ .



 $\begin{pmatrix} a & 0 \\ 0 & (a^*)^{-1} \end{pmatrix} : z \mapsto aza^*$  corresponds to a rotation associated to *a* followed by a dilation by  $|a|^2$ .



$$\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : z \mapsto z + b$$
 corresponds to a translation by *b*.



$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} : z \mapsto -z^{-1}.$$

corresponds to a reflection in the unit *m*-sphere followed by a reflection in the hyperplane  $z_0 = 0$ .



$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} : z \mapsto -z^{-1}.$$

corresponds to a reflection in the unit *m*-sphere followed by a reflection in the hyperplane  $z_0 = 0$ .



Given an oriented generalized *m*-sphere *S*, the *inversive-coordinate* matrix of *S* is the  $2 \times 2$  matrix

$$M_{\mathcal{S}} := egin{pmatrix} \hat{eta}(\mathcal{S}) & \xi(\mathcal{S}) \ \overline{\xi(\mathcal{S})} & eta(\mathcal{S}) \end{pmatrix}.$$

Given an oriented generalized *m*-sphere *S*, the *inversive-coordinate* matrix of *S* is the  $2 \times 2$  matrix

$$M_{\mathcal{S}} := egin{pmatrix} \hat{eta}(\mathcal{S}) & \xi(\mathcal{S}) \ \overline{\xi(\mathcal{S})} & eta(\mathcal{S}) \end{pmatrix}.$$

• 
$$(\overline{M_S})^{\top} = M_S$$

Given an oriented generalized *m*-sphere *S*, the *inversive-coordinate* matrix of *S* is the  $2 \times 2$  matrix

$$M_S := egin{pmatrix} \hat{eta}(S) & \xi(S) \ \overline{\xi(S)} & eta(S) \end{pmatrix}.$$

• 
$$(\overline{M_S})^{\top} = M_S$$

• 
$$\Delta(M_S) = \hat{\beta}(S)(\beta(S))^* - \xi(S)(\overline{\xi(S)})^* = -1$$
 since  
 $\beta(S)\hat{\beta}(S) - |\xi(S)|^2 = -1$ 

## Inversive Coordinates Example 1



• 
$$\beta(S) = \frac{1}{2}$$
  
•  $\hat{\beta}(S) = 6$   
•  $\xi(S) = \frac{1}{2}(4,0) = (2,0)$   
 $\sim 2 + 0i = 2$   
•  $M_S = \begin{pmatrix} 6 & 2 \\ 2 & \frac{1}{2} \end{pmatrix}$ 

★ 注 ▶ ★ 注 ▶ ...
#### Inversive Coordinates Example 2



• 
$$\beta(S) = 0$$
  
•  $\hat{\beta}(S) = 2$   
•  $\xi(S) = (0,1) \sim 0 + i = i$   
•  $M_S = \begin{pmatrix} 2 & i \\ -i & 0 \end{pmatrix}$ 

æ

∃ ► < ∃ ►</p>

#### Theorem (J., 2020)

The group  $SL(2, C_m)$  acts on the set of inversive-coordinate matrices by

$$g.M := gM\overline{g}^{\top}$$

for an inversive-coordinate matrix M and  $g \in SL(2, C_m)$ . The group action of  $SL(2, C_m)$  on the set of inversive-coordinate matrices is equivalent to the group action of  $SL(2, C_m)$  on the set of oriented generalized m-spheres. That is, if S is an oriented generalized m-sphere and  $g \in SL(2, C_m)$ , then

$$M_{g(S)}=g.M_S.$$

Extends works that Sheydvasser did for m = 2 in 2019.

• Check that  $g.M = gM\overline{g}^{\top}$  is a group action of  $SL(2, C_m)$  on the set of inversive-coordinate matrices.

• 
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
  $M = \Lambda$ 

• Check that  $g.M = gM\overline{g}^{\top}$  is a group action of  $SL(2, C_m)$  on the set of inversive-coordinate matrices.

• 
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} .M = M$$
  
•  $(gh).M = (gh)M\overline{(gh)}^{\top} = g(hM\overline{h}^{\top})\overline{g}^{\top} = g.(h.M)$  for  $g, h \in SL(2, C_m)$ 

• Check that  $g.M = gM\overline{g}^{\top}$  is a group action of  $SL(2, C_m)$  on the set of inversive-coordinate matrices.

• 
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
  $M = M$ 

- $(gh).M = (gh)M\overline{(gh)}^{\top} = g(hM\overline{h}^{\top})\overline{g}^{\top} = g.(h.M)$  for  $g, h \in SL(2, C_m)$
- Verify that  $M_{g(S)} = g.M_S$  for any oriented generalized *m*-sphere *S* and for any generator *g* of SL(2,  $C_m$ ).

$$g = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \text{ for some fixed } b \in V_m \text{ and } M_{S_0} = \begin{pmatrix} \hat{\beta} & \xi \\ \overline{\xi} & \beta \end{pmatrix}.$$
$$g \colon z \mapsto z + b$$



æ

$$g = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \text{ for some fixed } b \in V_m \text{ and } M_{S_0} = \begin{pmatrix} \hat{\beta} & \xi \\ \overline{\xi} & \beta \end{pmatrix}.$$
$$g \colon z \mapsto z + b$$





æ

∃ ► < ∃ ►</p>

$$g = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \text{ for some fixed } b \in V_m \text{ and } M_{S_0} = \begin{pmatrix} \hat{\beta} & \xi \\ \overline{\xi} & \beta \end{pmatrix}.$$
$$g \colon z \mapsto z + b$$



 $\implies \beta \mapsto \beta$  and  $\xi \mapsto \xi + \beta b$ .

э

-

$$g = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \text{ for some fixed } b \in V_m \text{ and } M_{S_0} = \begin{pmatrix} \hat{\beta} & \xi \\ \overline{\xi} & \beta \end{pmatrix}.$$
$$g \colon z \mapsto z + b$$



 $\implies \beta \mapsto \beta$  and  $\xi \mapsto \xi + \beta b$ .

If  $\beta \neq 0$ , we can apply  $\beta(S)\hat{\beta}(S) - |\xi(S)|^2 = -1$  and see that  $\hat{\beta} \mapsto \hat{\beta} + b\overline{\xi} + \xi\overline{b} + \beta|b|^2$ .

$$g = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \text{ for some fixed } b \in V_m \text{ and } M_{S_0} = \begin{pmatrix} \hat{\beta} & \xi \\ \overline{\xi} & \beta \end{pmatrix}.$$
$$g \colon z \mapsto z + b$$



 $\implies \beta \mapsto \beta \text{ and } \xi \mapsto \xi + \beta b.$ 

If  $\beta \neq 0$ , we can apply  $\beta(S)\hat{\beta}(S) - |\xi(S)|^2 = -1$  and see that  $\hat{\beta} \mapsto \hat{\beta} + b\overline{\xi} + \xi\overline{b} + \beta |b|^2$ .

If  $\beta = 0$ , we can use the fact that  $\frac{\hat{\beta}(S)}{2}\xi(S)$  is the closest point on a hyperplane S to the origin and see that  $\hat{\beta} \mapsto \hat{\beta} + b\overline{\xi} + \xi\overline{b} + \beta|b|^2$ .

$$g = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \text{ for some fixed } b \in V_m.$$
  

$$g: z \mapsto z + b$$
  

$$\implies \beta \mapsto \beta, \quad \xi \mapsto \xi + \beta b, \quad \overline{\xi} \mapsto \overline{\xi} + \beta \overline{b},$$
  

$$\hat{\beta} \mapsto \hat{\beta} + b\overline{\xi} + \xi \overline{b} + \beta |b|^2.$$

æ

$$g = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \text{ for some fixed } b \in V_m.$$
  

$$g: z \mapsto z + b$$
  

$$\implies \beta \mapsto \beta, \quad \xi \mapsto \xi + \beta b, \quad \overline{\xi} \mapsto \overline{\xi} + \beta \overline{b},$$
  

$$\widehat{\beta} \mapsto \widehat{\beta} + b\overline{\xi} + \xi \overline{b} + \beta |b|^2.$$

We verify that g induces the same mapping on the inversive-coordinate matrix:

$$g.M_{S_0} = gM_{S_0}\overline{g}^{\top} = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{\beta} & \xi \\ \overline{\xi} & \beta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \overline{b} & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \hat{\beta} + b\overline{\xi} + \xi\overline{b} + \beta |b|^2 & \xi + \beta b \\ \overline{\xi} + \beta\overline{b} & \beta \end{pmatrix}$$

∃ ► < ∃ ►</p>

## Möbius Transformations and Inversive Coordinates on Cm

#### Corollary (J., 2020)

Let

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, C_m),$$

and let  $S_0$  be an oriented generalized m-sphere with an inversive-coordinate matrix

$$M_{S_0} = \begin{pmatrix} \hat{eta} & \xi \ \overline{\xi} & eta \end{pmatrix}.$$

Then  $g(S_0)$  has the following inversive coordinates:

- bend  $\beta(g(S_0)) = \hat{\beta}|c|^2 + d\overline{\xi}\overline{c} + c\xi\overline{d} + \beta|d|^2$
- co-bend  $\hat{\beta}(g(S_0)) = \hat{\beta}|a|^2 + b\overline{\xi}\overline{a} + a\overline{\xi}\overline{b} + \beta|b|^2$
- bend-center  $\xi(g(S_0)) = a\hat{\beta}\overline{c} + b\overline{\xi}\overline{c} + a\overline{\xi}\overline{d} + b\beta\overline{d}$

## Möbius Transformations and Inversive Coordinates on Cm

Define  $\widehat{V_{m-1}}$  be the oriented hyperplane with the inversive-coordinate matrix

$$M_{\widehat{V_{m-1}}} = \begin{pmatrix} 0 & i_m \\ -i_m & 0 \end{pmatrix}$$

# Möbius Transformations and Inversive Coordinates on $C_m$

Define  $\widehat{V_{m-1}}$  be the oriented hyperplane with the inversive-coordinate matrix

$$M_{\widehat{V_{m-1}}} = \begin{pmatrix} 0 & i_m \\ -i_m & 0 \end{pmatrix}$$

Corollary (J., 2020)

Let 
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, C_m).$$
  
Then  $S = g(\widehat{V_{m-1}})$  has the following inversive coordinates:  
• bend  $\beta(S) = ci_m \overline{d} - di_m \overline{c}$   
• co-bend  $\hat{\beta}(S) = ai_m \overline{b} - bi_m \overline{a}$   
• bend-center  $\xi(S) = ai_m \overline{d} - bi_m \overline{c}$ 

- m = 1 is Stange's result.
- m = 2 done by Sheydvasser.

## Thank you for listening!

æ